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Analysis of faulting in porous sandstones 
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Abstract--Faults in porous sandstones occur in three forms: deformation bands about 1-mm thick and tens of m 
long and across which offsets are a few mm; zones of deformation bands constituted of many closely spaced 
deformation bands across which offsets are a few cm or dm; and slip surfaces, that is, distinct surfaces within zones 
of deformation bands across which offsets are a few m to a few tens of m. Deformation bands represent highly 
localized deformation; analogous localization within a field of homogeneous deformation is theoretically possible 
in inelastic materials with certain ranges of constitutive parameters. Crushing and consolidation of sandstone 
within a band cause the material there to become stiffer than the surrounding porous sandstone. A zone of 
deformation bands behaves mesoscopically much as a stiff inclusion in a soft matrix. According to the constitutive 
model assumed to investigate the formation of deformation bands, an instability can develop, and strain 
increments within the zone of deformation bands can become boundlessly large when the far-field stresses reach 
critical values. This instability is here associated with the formation of slip surfaces. 

INTRODUCTION 

UNTIL recently, faults have been analyzed as though 
they were planar surfaces of discontinuity of displace- 
ment (see for example, Od6 1960, Varnes 1962). Yet 
deformation bands and zones of deformation bands, two 
types of faults in the Entrada and Navajo sandstones 
(Aydin 1978, Aydin & Johnson 1978), are finite in 
thickness and the strain is distributed through the 
thickness. Several investigators have recently developed 
theoretical models to explain the formation of faults and 
shear bands of finite thickness. Brady (1974) attempted 
to analyze the growth of faults in a brittle-elastic 
material containing cracks, representing a fault zone as a 
soft inclusion. Argon (1975) analyzed the development 
of deformation bands in strain-softening polymers. 
Rice, Rudnicki and Cleary showed that the inhomogene- 
ous nature of deformation banding can be explained as a 
bifurcation in the macroscopic constitutive relations of 
homogeneous deformation for brittle or plastic materials 
(Rice 1975, Rudnicki & Rice 1975, Cleary & Rudnicki 
1976, Cleary 1976, Rudnicki 1977, Rice 1979). 

The assumptions in the analyses of Rice, Rudnicki 
and Cleary appear to be consistent with some of our 
observations of faulting in the Navajo and Entrada 
sandstones and with the common experimental observa- 
tion that the stress-strain curves for sedimentary rocks 
under confining pressures greater than about 0.5 kb tend 
to be concave downward (e.g. Handin & Hager 1957). 
There is, however, no relevant experimental informa- 
tion about many of the constitutive parameters that 
enter the theory. It is clear that relevant experiments are 
essential. Yet we can learn something about deforma- 
tion bands in the Entrada and Navajo sandstones by 

following the approach of Rudnicki & Rice (1975), and 
something about the formation of slip surfaces by 
following the approach of Rudnicki (1977) and Rice 
(1979). 

In previous papers we have described three types of 
faults in porous sandstones (Aydin 1978, Aydin & 
Johnson 1978) and have documented their patterns 
(Aydin & Reches 1982). In this paper we collect the 
observations we believe to be the most important and 
compare them to results of analyses of idealized pro- 
cesses of faulting. Our observations of faulting in 
sandstones can suggest only rough estimates of the 
ranges of some of the parameters. 

NATURE OF FAULTING IN POROUS SANDSTONE 

Faults in the Navajo and Entrada sandstones in SE 
Utah have been described in detail in other papers 
(Aydin 1978, Aydin & Johnson 1978, Aydin & Reches 
1982) so that the descriptions here will be brief. Both the 
Navajo and Entrada sandstones are friable, being com- 
posed primarily of quartz and feldspar, and quite porous, 
pores constituting about 25% of the rock volume. Three 
forms of faults are recognized in these sandstones: 
deformation bands, zones of deformation bands and slip 
surfaces. Each form occurs in dip-slip, strike-slip and 
oblique- slip. Small faults occur as deformation bands, 
about l-ram thick, in which pores collapse and sand 
grains fracture and along which there are shear displace- 
ments of the order of a few mm or cm. Two or more 
adjacent deformation bands that share the same strike 
and dip form a zone of deformation bands. A zone 
becomes thicker by addition of new bands, side by side. 
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Finally, slip surfaces, through-going surfaces of discon- 
tinuity in displacement, form at either edge of zones of 
highly concentrated deformation bands. In the San 
Rafael Desert (SE Utah,  U.S.A.)  slip surfaces accom- 
modate large displacements in the order of several or 
tens of meters. 

Deformation bands 

Small faults in porous sandstones with displacements 
of a few mm contain no surface of discontinuity; rather 
they occur as deformation bands, about 1-mm thick and 
tens or hundreds of m long across which the displace- 
ments are distributed (Fig. la). A single deformation 
band offsetting cross-bedding in the Entrada Sandstone 
in the San Rafael Desert,  appears as a standing rib in the 
outcrop (Fig. la). Examination in thin section (Fig. lb) 
shows that sizes of sand grains have been reduced 
markedly by crushing within the band and that the 
deformation is highly localized. The average size of 
grains within the band is about an order of magnitude 
smaller than that of grains in the parent rock outside the 
band (Aydin 1978). The average porosity within a band 
is less than about 6-10%. Since parent sandstones have 
porosities of about 23-25%, the reduction of porosity 
during the formation of a deformation band is more than 
60%. 

Certain observations (Aydin 1978) need to be con- 
sidered in the development of a suitable theory of 
deformation banding of porous sandstones. 

( l )  The deformation is highly localized within a 
narrow band. 

(2) Permanent  deformation in a band is by fracturing 
and displacement of grains, by distortion of the matrix 
and by reduction of pore volume. 

(3) There is both volume decrease and shear displace- 
ment across the band. The magnitude of the volumetric 
strain is at least 0.2, and the average shear strain is of the 
order of 1-10. 

(4) The physical properties, including density and 
grain size, and probably elasticity and strength, change 
as deformation proceeds. 

Zones of deformation bands 

Where two or more deformation bands occur side by 
side, they form a zone of deformation bands. The zone 
in the Entrada Sandstone of the San Rafael Desert,  
Utah,  shown in Fig. l(c),  is made up of about ten 
deformation bands with common dip and strike off- 
setting a single band of different dip and strike. A zone 
becomes thicker by addition of new deformation bands; 
the thickness of a zone depends on the number and 
spacing of individual deformation bands contained. In 
the San Rafael Desert ,  the thickness is as much as about 
0.5 m. Total displacement across the zone is the sum of 
the displacements on individual bands. The average 
displacement across a zone containing about 100 bands 
is of the order  of 30 cm. The displacement across the 
zone of about ten bands in the Entrada Sandstone (Fig. 

lc) is relatively small, about 2 cm. The individual 
deformation bands making up a zone are parallel or 
subparallel, commonly inosculating but rarely crossing 
(Aydin & Johnson 1978). The traces of individual bands 
within a zone are quite straight in a plane containing the 
direction of shear but wavy in a plane normal to the 
direction of shear. 

Certain observations need to be explained by a 
suitable theory of faulting concerning the production of 
zones of deformation bands in porous sandstones. 

(5) The deformation bands form side by side. This 
observation raises the question why further deformation 
is accommodated by the formation of a new band, rather 
than by continued displacement on a pre-existing band, 
and why the new band forms immediately adjacent to 
the pre-existing band. 

(6) Zones are at most a few dm wide but are tens or 
hundreds of meters in extent. Thus zones of deformation 
bands, like individual deformation bands, represent 
highly localized deformation of the sandstones. 

(7) The trace of an isolated deformation band tends 
to be straight, but the trace of a deformation band within 
a zone is wavy or inosculates in a plane normal to the 
direction of shear. 

Slip surfaces 

Some of the zones of highly concentrated deformation 
bands are accompanied by slip surfaces; through-going, 
discrete surfaces of discontinuity in displacement (Aydin 
& Johnson 1978). Slip surfaces can be recognized by 
well-developed striations and grooves (Fig. ld) that 
indicate the occurrence and direction of sliding between 
two blocks. The displacement is much larger across 
surfaces than across bands and zones (Fig. 1); for 
example, the net slip along the surface of the Entrada 
Sandstone shown in Fig. l(d) is about 7 m. Study of slip 
surfaces and their adjacent rock by optical and electron 
microscope indicates that the porosity is nearly zero and 
the grain size highly reduced within about 0.05 mm of the 
slip surface (Aydin & Johnson 1978). 

Certain observations concerning slip surfaces need to 
be explained by a suitable theory of faulting of porous 
sandstones. 

(8) A slip surface represents extremely localized, 
large deformation. The formation of a slip surface marks 
a change in the style of deformation from continuous 
and zonal (in a band and in a zone) to discontinuous and 
planar (in a slip surface). 

(9) A slip surface has not been observed in the porous 
Entrada and Navajo sandstones except within a zone of 
deformation bands. 

Sequential development 

Spatial relations among deformation bands, zones of 
deformation bands, and slip surfaces in the San Rafael 
Desert,  southeastern Utah (Aydin 1978, Aydin & 
Johnson 1978) indicate that these three structures 
develop sequentially (Fig. 2). Although slip surfaces are 



Fig. 1. Three forms of fault in the Entrada Sandstone exposed in the San Rafael Desert, SE Utah. (a) Single deformation band offsetting 
cross bedding. (b) Photomicrograph showing crushed grains and grain-size reduction within a deformation band. (c) Zone of about 10 
deformation bands offsetting a single band. (d) Slip surface with about 7 m of offset. For specific localities and additional examples, see Aydin 

(1978) and Aydin & Johnson (1978). 
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Fig. 2. Series of block diagrams showing sequential development from 
a single band to a slip surface. (a) Single deformation band. (b) Two 
inosculating bands. (c) Zone of deformation bands. (d) Slip surface 

developed on left-hand edge of zone. 

always associated with zones of deformation bands, 
many zones do not contain slip surfaces. Similarly, zones 
are made up of deformation bands, but deformation 
bands commonly occur individually, distant from zones. 
An individual deformation band, therefore,  is a primary 
structural element and its formation marks an early 
stage in the process of major  faulting in the Entrada and 
Navajo sandstones (Aydin & Johnson 1978). 

(11) Each type of fault occurs in sets with relatively 
regular spacing. 

(12) Each type of fault occurs in networks constituted 
of multiple sets. In dip-  and oblique-slip faulting, there 
are more than two and typically four sets. 

ANALYSIS OF FAULTING IN POROUS 
SANDSTONES 

The characteristics of deformation bands, zones of 
deformation bands and slip surfaces observed in the 
Entrada and Navajo sandstones suggest that faulting in 
these rocks is not a single process but rather a complex of 
processes. We are unable to analyze some of the pro- 
cesses, in part because existing theories do not fully 
accommodate them and in part because experimental 
studies of such faults do not provide critical parameters.  
The most promising theories have been developed by 
Rice, Rudnicki and Cleary (Rice 1975, 1976, Rudnicki 
& Rice 1975, Cleary & Rudnicki 1976, Cleary 1976, 
Rudnicki 1977, Rice 1979) who have generalized plastic- 
ity theory such that it can describe localized deformation 
in idealized brittle or plastic materials. We shall use 
parts of these theories in our analyses of faulting in the 
Entrada and Navajo sandstones. 

We shall analyze in more detail the formation of 
individual deformation bands. We first describe 
mechanisms of formation of deformation bands as 
deduced from field and laboratory observations, then 
use available theory to quantify some of the mechanisms. 
We are unable to analyze the formation of zones of 
deformation bands, but the theory can help us under- 
stand the formation of slip surfaces within zones of 
deformation bands. 

Multiple bands, zones and surfaces Mechanism for formation of deformation bands 

Deformation bands, zones of deformation bands and 
slip surfaces occur in networks comprised of multiple 
sets. Members of a set share a common dip and strike. 
The spacing between bands within a set is generally 
10-25 cm but is larger between zones or surfaces. 
Networks of multiple sets of bands, zones and surfaces 
form relatively regular geometric patterns. Such pat- 
terns in the San Rafael Desert  are described in another 
paper (Aydin & Reches 1982). Briefly, two sets are 
common in strike-slip faulting and the strikes of the 
faults typically intersect at angles of about 60 ° . There  are 
generally more than two sets, typically four, in dip-  and 
oblique-slip faulting, and the angle between the strikes 
of the faults ranges from a few tens of degrees to 90 ° but 
is typically 20-30 ° . 

These observations of multiple faulting and of the 
sequence of faulting in porous sandstones need to be 
explained. 

(10) Bands, zones and surfaces of a single set form 
sequentially and are parallel to one another.  The orien- 
tation of slip surfaces is controlled by the orientation of 
zones of deformation bands. 

Detailed study of terminal parts and outer zones of 
deformation bands suggests that, in the first stage of 
deformation,  grains move closer together by yield- 
ing of matrix and collapsing of pores between grains 
(Aydin 1978). The band presumably initiates at an 
imperfection, for example, a small volume of sandstone 
that contains more pore space than the surrounding 
sandstone. During the first stage of growth, contact 
points and contact areas between neighboring grains 
increase, thereby increasing friction of the mass. This, in 
turn, results in strong interlocking such that further 
deformation requires fracturing of grains. The fracturing 
starts at contacts where high stress concentrations occur 
(Aydin 1978). The fracturing can result from an increase 
in pressure alone if the pressure is sufficiently high 
(Vesic & Clough 1968). It generally results, however,  
from a combination of pressure and shear, the shear 
tending to dilate the mass (Rowe 1962), concentrating 
forces at fewer contact points between grains. After  
grains fracture, the newly created angular subgrains are 
further fractured, and most of the original grains are 
demolished. During this stage, the band decreases in 
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volume and is sheared. Both the strength and the 
elasticity moduli of the material  within the band increase 
because the decrease in grain size results in an increase in 
contact points per unit of area and, therefore,  a decrease 
in stress concentration at contact points (e.g. Lambe  & 
Whitman 1969). A band grows in length by crushing of 
sandstone at its periphery,  forming a crudely disc-shaped 
deformat ion band about  1-mm thick and several tens or 
a few hundreds of m in diameter.  

A cons t i tu t ive  m o d e l  f o r  p o r o u s  sands tones  

Most of the essential macroscopic processes involved 
in the formation of deformation bands in porous 
sandstones,  we believe, are incorporated in a theory of 
inelastic deformat ion of strain-hardening (or softening) 
materials developed by Rudnicki & Rice (1975). The 
theory is a generalization of the Prandt l -Reuss  theory 
(Hill 1950, pp. 23-45; Kachanov 1974, pp. 58-67) of 
elastic-plastic, strain-hardening materials.  According to 
the Prandt l -Reuss  theory of isotropic hardening, the 
increase in stress required for an increment of inelastic 
deformat ion is some function of the total inelastic strain 
of the material  (Hill 1950, p. 32). If J2 is the second 
invariant of the deviatoric stresses, 

J~ = (1/2)o-'#o-lj ( la )  

and 

o-'q = o-q - (1/3)Crkk60, ( lb)  

where (1/3)o-kk is the mean normal  stress and 6q is the 
Kronecker  delta. If 2 f  is the second invariant of the 
deviatoric strain velocities of inelastic deformation,  

A P p P ~P 
= (1/2)(D l i D , j )  ( lc)  

D'q = D~j-  (1/3)Dkk6 a ( ld)  

D~j = (1/2)(OvffOxj + OvffOxi) ( le)  

then 

.12 = H [ I  A P dt], ( If)  

where H is some function (Fig. 3a), v is a component  of 
velocity, t is t ime, x is position and the superscript P, 
refers to plastic or inelastic deformation.  The Prandt l -  
Reuss theory incorporates the Levy-Mises  relations, 

which state that inelastic deformation is incrementally 
related to deviatoric stresses (Hill 1950, p. 38). An 
increment of deformation has an elastic component  and 
an inelastic component ,  and increments of elastic strain 
and stress are related by the equations (Figs. 3b & c) 

dyc = (dz/G) (2a) 

de c = - ( d o - ~ K ) ,  (2b) 

where y is shear strain, z shear stress, • volumetric strain, 
o- mean stress, G shear modulus and K bulk modulus. 
Equations (2) account for elastic deformation of porous 
sandstone that occurs during loading or unloading of the 
rock. 

The increments of plastic deformation during loading 
are determined by 

d y  e = (dz - /xdo-)/h;  dz - /xdo-  > 0 (3a) 

de P = - (do - /K  °) +/3(dz  - Ixdo-)/h; do- > 0. (3b) 

Here  h is a hardening (or softening) modulus,  /x 
coefficient of friction and K ° an inelastic bulk modulus 
that relates inelastic volume change to the change in the 
mean stress. The bulk modulus is introduced into the 
Rudnicki-Rice theory in order to accommodate  some of 
our observations. It does not fundamental ly change the 
theory. Equations (3) appear  to account for the types of 
inelastic deformations during loading associated with 
the growth of a deformation band. The reduction of pore 
space during the initial stages of formation of a band, for 
example,  can be incorporated through the term K °, 
which controls the magnitude of the inelastic volume 
change produced by the mean stress. We imagine that 
friction results from interlocking as well as contact fric- 
tion (Rowe 1962) between sand grains. The theory 
incorporates such effects through the paramete r  ix. 

The method of determining the hardening modulus of 
a material  is explained by Hill (1950, p. 28). If a sample 
is subjected to pure shear, the hardening modulus relates 
to the slope, h tan, of the stress-strain curve by 

h ta" = h/(1 + h / G ) .  (4a) 

The hardening modulus is a function of the total plastic 
strain (Fig. 3b) of the material and may be either positive 
or negative. It is positive if the material is strain harden- 
ing and negative if it is strain softening. Finally,/3 is the 

o 
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Ine last ic  ( f  AP cIt) Shear 
Stra in Strain ( ~ )  

(o) (b) 

K * _  KK° 
c ~o K+K° 
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Volumetric (_~) 
Strain 
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Fig. 3. Idealized stress-strain curves for elastic-inelastic material. (a) Relation between second 
invariant, J2, of deviatoric stresses and total deviatoric inelastic strains. (b) Shear stress-strain 
relation in which slope, h tan, is a function of the elasticity shear modulus, G, and the hardening 
modulus, h. (c) Relation between mean stress and volumetric strain. K* is the effective bulk 

modulus. 
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dilatancy factor, which relates the increment of inelastic 
volume change to an increment of inelastic shear strain. 
The total increment of inelastic volume change resulting 
from shear and from mean stress can be expressed as 

d e  e = - d t r / K  ° + rid'y R. 

Again, the dilatancy factor may be positive or negative. 
For most dense rocks the dilatancy factor represents 
opening of cracks and sliding at crack asperities and thus 
is positive (Rudnicki 1977) whereas for porous rocks, it 
corresponds to a decrease in volume due to shear and is 
therefore likely to be negative. Indeed, it is well known 
in soil mechanics that the sign of dilatancy is determined 
by the porosity of granular solids and the mean stress 
acting on them (Lambe & Whitman 1969, p. 131). 

All these parameters, the dilatancy factor, the harden- 
ing modulus, the inelastic bulk modulus, the friction 
coefficient, and the two elasticity moduli, will depend on 
the state of strain, the porosity and the crushing of sand 
grains so that they are variables, not constants. For 
example, Morgenstern & Phukan 0970) have shown 
experimentally that the tangent modulus of a sandstone 
depends on the porosity of the sandstone. 

Equations (2) and (3) can be generalized by replacing 
shear stress by the second invariant of the deviatoric 
stresses, strain increment by deformation rates, and 
stress increments by the spin invariant, Jaumann stress 
rates (Rudnicki & Rice 1975, p. 378): 

2D; i = (v ; j /G)  +(1/h)(o'iJJ2)[(tr'kt/2) Vkt + t t(bkfl3)  X/J2l 

(5a) 

Dkk = (VkJ3K*) + (#/h)[(b'kd2X/J2)bk, + t~(Vkk/3)l • 

(5b) 

Here 

K* = K K ° / ( K  + K °) (5c) 

where K* is the effective bulk modulus. 

The Jaumann stress rate (Malvern 1969, Fung 1965) is 
expressed by 

v = (Dcrq/Dt) - O'jpg~pi (6a) or q Or ip~'~ pj - -  

the material time derivative by 

Do-q/Dt = Oo-qlOt + VkOerii/OX k (6b) 

and the spin tensor by 

S2q = (1/2)[(avj/axg) - (av#ax~)]. (6c) 

Equations (5) can be inverted to the form (Rudnicki & 
Rice 1975, p. 383) 

v {G[emke,,l + &~tek~] + [K* - 2G/3]ekfim, O'kl 

-- [( G t r ' k t /X / J2 )  + f l K *  t ~ k l ] [ ( G o " n / X / J 2 )  

+ K*l~emn]/[h + G +/-tK*/3]}Dm, (7a) 

which is of the form 
v 
O-kl -= LktmnDm.. (7b) 

Condit ions required for  localization o f  deformation 

We shall now investigate conditions for localization of 
deformation within the idealized material, following 
Rudnicki & Rice (1975), in order to obtain some insights 
into possible conditions required for inception of defor- 
mation banding in porous sandstones. In Fig. 4, an 
element of the idealized material made up of matrix 
surrounding a band infinitely long and of unspecified 
thickness is subjected to principal stresses ~r 1, ~ and o- 3 
(compressive stresses positive). The coordinate system 
used for stresses and velocities relates to the orientation 
of the band. Here x2 is normal to the band and xl and x3 
are in the plane of the band. The stresses inside the band 
(o~}) are shown on the left-hand side in Fig. 4 and the 
stresses in the matrix (o-(7~) on the right-hand side. At 
the inception of banding, the velocities of particles 
remain continuous, and strain rates in the 1- and 3-direc- 
tions, parallel to the band, remain continuous; any 

L Matrix 

\ ~ .  "%3 If 22(m ) 

Fig. 4. Idealized band at localization, and identification of stresses and  coordinate 
systems.  Superscript m refers to matrix and i refers to interior of band.  
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differences between strain rates inside and outside the 
band are restricted to derivatives of  velocities with 
respect to distances normal to the band (the 2-direction 
Fig. 4). If  V (i) is a velocity inside the band and v (m) a 
velocity in the matrix, the differences in derivatives of 
velocities are of the form 

(OV(ki)/OXl- cO, V(km)/OXl) =gk(X2)~12, ( 8 a )  

where g is some function of the 2-direction, which is zero 
for x2 outside the band. In investigating conditions for 
banding, we determine conditions under  which there 
may be differences in strain rates inside a band and in the 
matrix; that is, we determine conditions under which 
gk(X2) can be nonzero.  

In order for there to be equilibrium of stresses at the 
inception of banding, the material  t ime-rate derivatives 
of stresses must satisfy the equations 

O(Do.i/Dt)/axi = O. (Sb) 

In order for (8b) to be satisfied inside the band and in the 
matrix and for the differences in strain to be restricted to 
those defined by (8a), the condition required for equilib- 
rium can be stated as 

( Do.!~)lDt - Do.l~)lDt) = O. (8c) 

Therefore ,  the differences in Jaumann stress rates (6a) 
inside the band and in the matrix are 

(v~i) _ v~,)) = _(1/2)(o.22 _ o.u)gi +(1/2)o.,3g~ (9a) 

- -  t - ' 2 2  ) = o . 2 1 g l  - F  o . 2 3 g 3  (9b) 

v ( i l _  v ~ ) )  = _(1/2)(o.22 _ o.33)g3 -l- (1/2)o.31gl (9c) t J 2 3  _ • 

Now, at the inception of banding, the propert ies  of the 
material inside the band are the same as those of the 
material in the matrix so that the coefficients L, in 
equation (7b), are the same inside and outside the band. 
Accordingly, the expressions for the differences in 
Jaumann stress rates inside and outside the band are 

( v ! i ) -  v!7) ) = Lokt(Dik,-D~,) = Lijk2g, k. (10a) 

If  we write the right-hand sides of equations (9) as Rjkgk, 
the condition for banding to begin is that 

det[L2jk2 - Rjk I = 0. (10b) 

The most significant result of this analysis by Rudnicki 
& Rice (1975) is that localization of deformation can 
occur; that is, (10b) can be satisfied for certain stress 
states and for certain ranges of constitutive parameters .  
Suppose that a material is subjected to a state of uniform 
stress and strain. If the material has certain combinations 
of elastic and inelastic properties,  the strain can become 
nonuniform and can become concentrated within a 
band. The nonuniformity of the strain field is introduced 
by gk, and the necessary conditions for the nonuni- 
fortuity to exist is given by (10b). The condition for 

banding is thefirst  condition reached during the loading 
history of the material  for which (10b) is satisfied. In 
general,  in order to calculate this condition, one must 
know the functional relations among the states of stress 
and strain and the various parameters .  Unfortunately,  
there has been no experimental  study of rock properties 
that is sufficiently detailed to define the parameters  
required for an evaluation of localized deformation.  

In their analysis of localization of deformation into 
bands, Rudnicki & Rice (1975) assume that the harden- 
ing modulus,  h, changes more  with changes of stress and 
strain than do the shear and bulk moduli G and K, the 
friction coefficient, /z, and dilatancy factor /3. They 
further assume that the stress-strain curve inherent to 
the rock itself, without localization phenomena ,  is 
concave downward,  as shown in Fig. 3(a) so that the 
hardening modulus is a decreasing function of the 
amount  of inelastic strain. Therefore ,  they determine 
the maximum value of h that satisfies (10b). If the 
deviatoric stresses, J2, are small relative to the elasticity 
shear modulus, G, of the rock, the second term, Rjk, in 
(10b) is negligible relative to the first, and the condition 
for localization is that 

det IL2jk21 = 0 

and the hardening modulus must satisfy the equation 

h/(G + txK*fl) = - 1  + A + B, (1 la) 

where 

A = (Go.~2 + fiK*X/J2)(GO.~_ + tzK*X/J~)/ 

[J2(K* + 4G/3)(G +/zK*/3)] ( l l b )  

B = G(o.~e, + o.~23)/[J2(G +/xK*/3) I. (1 lc) 

Now, (11a) contains the stresses o.ij referred to the 
coordinate system of the band (Fig. 4), which can be 
expressed in terms of magnitude and directions of princi- 
pal stresses relative to the direction of the band. By 
differentiating the hardening modulus in ( l l a )  with 
respect to the three direction cosines that relate the 
orientation of the band and the principal stress direc- 
tions, Rudnicki & Rice (1975, appendix) derived the 
following results. 

(1) The orientation of band that maximizes the har- 
dening modulus contains the intermediate principal 
stress; that is, the direction of o.2 lies within the band. 
This result is not at all encouraging for an explanation of 
multiple sets of deformation bands in the Navajo and 
Entrada sandstones (Observat ion 12 in earlier para- 
graphs). The theory would predict two conjugate bands, 
whereas the field observations indicate more than two, 
typically four, for d ip-  and oblique-slip faulting. It is 
possible that experimental  determination of the 
parameters  will provide a means for eliminating this 
critical difficulty. 

(2) The orientation of the band that maximizes h is a 
function of the stress state as well as the various elasticity 
and inelasticity parameters  (Fig. 4): 
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0c,i, =0o = tan t[(~ _ o . j ~ / j 2 ) / { ( o . i /V ]2 )  _ %~}]1/2 (12a) 

where 

~: = [(1 + u*)(/3 + #)/3] - (o-~/~/J2)(1 - u*) (12b) 

u* = [(3K*/2G) - 1]/[(3K*/G) + l]. (12c) 

Rudnicki & Rice (1975) have shown that (12a) predicts 
bands oriented at angles less than 45 ° to the direction of 
maximum compression (as in the Coulomb and Mohr  
theories of faulting) if the dilatancy factor is positive. 

(3) The corresponding critical hardening modulus is 

(hcrit/G) = ho /G  ---- (1 + u* ) [ ( f l  - #)2/{9(1 - p* ) }  

- (1 /2){ (o" /~/J2)  + (~ + #)/3}2] .  (12d) 

If the deviatoric stresses are comparable  in magnitude 
to the shear modulus, the expressions for the critical 
hardening modulus and the orientation of the bands are 
more complicated. To first order in J+/G (Rudnicki & 
Rice 1975, p. 390), 

Omt = Oo + (~ /JJG)[(#  - /3) (1  + v*)ctn(20o)/6 

- (1/4){1 - (3/4)o-@J2}l/2sin(20o)] (12e) 

and 

(hc,.it/G) = hll/G 

+ ( 4  . . . .  _ - 3cQ~/J2)(# - / 3 )  sm+(20o)(X/JJG)/{24(1 u*)}, 

(12f) 

where 00 is defined in (12a) and ho/G in (12d). 
Rudnicki & Rice (1975) have shown that, depending 

on the nature of the far-field stress state and of the 
constitutive parameters ,  localization in the form of 
deformation bands may set in either while the rock mass 
is continuously hardening, in which case h~m is positive, 
or when it is past its peak  strength and softening, in 
which case h,-~it is negative. Their  results show that, in 
general, if the dilatancy factor (/3) is positive, rocks 
subjected to ' triaxial '  or 'uniaxial '  compression should 
not develop localization in the form of bands unless the 
material is well beyond its peak strength and markedly 
softening. For example,  the lowermost curve in Fig. 5, 
based on (12d), is for an axisymmetric stress state in 
which o-2 :: 0-3, so t h a t  o-2/X/J 2 = 1/~/3. The critical 
tangent hardening modulus, 

h~']nt = hcrit/(1 4- hcrit/G), (13) 

ranges f rom about - 0 . 5 G  to - 1 . 1 8 G  for  a d i la tancy 
factor, /3,  ranging f rom 0 to 0.5, so that the mater ia l  must 
be softening marked ly  in order  for  local izat ion to occur. 
If the deviatoric intermediate stress is zero, however,  as 
in the case of pure shear, the tangent hardening modulus 
ranges from about +0 .03G to - 0 . 0 8 G  for the same 
range of dilatancy factor. 

Examination of deformation bands in the Entrada  and 
Navajo sandstones suggests that there is volume change 
in response to changes in mean stress and that dilatancy 
factors can be negative; that is, that shear can cause a 
volume decrease in the sandstones. First let us examine 
consequences of negative values of the dilatancy factor. 
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h crit, Fig. 5. Critical hardening modulus, ta~ normalized with shear 
modulus, G, as a function of dilatancy factor, /3, for various stress 
states. Positive values of hardening modulus correspond to hardening 

materials and negative to softening materials. 

Figure 5 shows that negative dilatancy factors can mar- 
kedly increase the critical, tangent hardening moduli. 
For axisymmetric stress states, for example,  the critical 
hardening modulus approaches zero as the dilatancy 
factor approaches -0 .5 .  For zero values of intermediate 
deviatoric stress, as for example in pure shear, the 
critical hardening moduli are positive for all negative 
values of the dilatancy factor. 

The effect of the inelastic volume change that results 
from changes of the mean stress can be studied by 
varying the paramete r  K* in equation (12c). K* is 
defined in (5c) in terms of the stiffness, K °, relative to 
inelastic volume changes produced by changes in mean 
stress and of the elasticity bulk modulus, K. It is clear 
that 

K*--* K if K ° >  K 

and 

K * - - ~ K  ° if K ° ~ K .  

Further,  if Poisson's ratio is 0.3, and K ° is so large that 
the material  is essentially incompressible inelastically, 
then K*/G = 2.17. The upper  and lower curves in Figs. 
6(a) & 8(b), respectively, closely correspond with this 
case. As the material becomes more compressible inelast- 
ically, K*/G reduces, approaching zero. The corre- 
sponding magnitudes of the critical hardening modulus 
decrease as K*/G decreases. These results indicate that 
localization tends to occur for stresses near peak values, 
where t an  • h c r i t  IS z e r o .  
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The crushing of grains within deformation bands in 
the Navajo and Entrada  sandstones produces volumetric 
strains of at least 0.2 (volume decrease),  and the average 
shear strain within a band is at least unity. Based on 
these data, we presume that the dilatancy factor is 
negative, perhaps - 0 . 2  or smaller. For a dilatancy factor 
of - 0 . 2 ,  according to Fig. 6, the critical hardening 
moduli should range from about -0 .25  to 0.1. Localiza- 
tion should occur near  the peak of the stress-strain 
curves for these sandstones. It is likely that the dilatancy 
factor is smaller than - 0 . 2 ,  because the volume change 
might be much greater  than the value used to calculate 
this factor (Aydin 1978), so that the critical hardening 
modulus for the onset of deformation banding in the 
Ent rada  and Navajo sandstones probably is positive. 

G3 . ~ . .  . . . . . . . . . . . . .  

~ o , 4 ~ .  (a) 
¢" 00. K ' G = 0 1  

-011 
-10 0,0 0.5 

(,8) 

Development of zones of deformation bands 

The formation of deformation bands side by side in 
the form of zones probably results partly from strain 
hardening of the crushed material  within a deformation 
band. The pore volume is much lower in a deformation 
band in the Ent rada  and Navajo sandstones than in the 
parent rock, and the decrease in pure volume should 
affect at least two of the constitutive parameters  dis- 
cussed here, the dilatancy factor, /3, and the inelastic 
bulk modulus,  K °. The dilatancy factor (3b) for porous 
sandstones is probably negative during initiation of a 
band,  as indicated before,  but becomes positive for 
material  within a band as pores collapse and grains 
interlock there. The inelastic bulk modulus (3b), which 
relates inelastic volume change to change in the mean 
stress, certainly increases markedly as the pore volume 
decreases within the band. The effective bulk modulus, 
K* (5c), of the crushed sandstone within bands, there- 
fore, probably exceeds the elastic bulk modulus of the 
parent sandstone. It is also possible that the hardening 
modulus h increases within the band. There  are indeed 
several reasons to believe that the material within the 
band strain hardens relative to the sandstone on either 
side of the band and that other bands must be initiated to 
accommodate  further faulting (Aydin 1978, pp. 926- 
927). 

It is not clear why the bands tend to occur close 
together and to inosculate to form a zone. Perhaps the 
formation of a zone is partly a result of interaction 
among nearby bands. 
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example pure shear. (b) Axisymmetric stress states, such as 'uniaxial' 

and 'triaxial' experimental testing. 

Development of slip surfaces 

Slip surfaces in the Entrada  and Navajo sandstones 
always occur in parts of well-developed zones of defor- 
mation bands where these bands are highly concen- 
trated. Since development  of faults as slip surfaces in 
these rocks appears  to mark  a change in style of faulting, 
it seems appropriate  to consider slip surfaces as manifes- 
tations of some kind of mechanical instability. We 
believe that the formation of slip surfaces within zones 
can be understood in terms of the conditions of ' runaway 
instability' (Rudnicki 1977, Rice 1979) which can be 
understood qualitatively in terms of the 'Eshelby line' 
that relates stresses in the matrix to stresses in an 
inclusion. 

According to Rudnicki (1977), runaway instability is a 
condition where strain increments within an inclusion 
become boundlessly large with an increase in the far-field 
stresses. Whereas the analysis of deformation bands was 
based on bifurcation in the solution for velocities within 
a band,  the analysis of runaway instability is based on 
boundless velocities within an inclusion. The stresses 
within a homogeneous  inclusion are homogeneous,  as 
shown by Eshelby (1957, 1959), even if the inclusion is 
anisotropic, so that the entire inclusion becomes unsta- 
ble during runaway instability. Rudnicki (1977) pointed 
out that this result pertains even if the inclusion deforms 
nonlinearly; he has determined the hardening modulus 
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required for runaway instability within a disc-shaped 
inclusion composed of the elastic-inelastic material 
discussed in this paper, see equations (2)-(5). The 
expression for the hardening modulus for instability is 
similar to that for bifurcation of solutions for an infinitely 
long inclusion (equation 11) except for some correction 
factors. Thus 

hr/ (G li) +/~K*/3) = - 1  + (1 - r/)A 

+ [1 - ~g{')/(K* + 4G(il/3)]B; (b /a )  ~ 1, (14a) 

where A and B are defined in ( l l b  and l lc ) ,  except that 
the cr's in (11) are replaced with corresponding values for 
the inclusion: 

¢T22 ----) or ; 0-11 ---+ or 0-23 ~ •23 

and 

"q = (b/a)Tr(2 - v)/(1 - v) (14b) 

= (b /a )~ / (1  - v). (14c) 

Examination of (14a) for a finite, disc-shaped inclu- 
sion indicates that two factors, in addition to those 
discussed in connection with bifurcation and localization 
of deformation,  affect the value of hardening modulus 
required for runaway instability. The first factor is the 
length of the inclusion. The longer the inclusion, the 
more unstable it is. This reduction is apparent in the 
correction factors, (14b) and (14c), which contribute to 
negative terms in the expression for the hardening 
modulus, (14a). The second factor is the relative mag- 
nitude of stresses in the inclusion and matrix. The 
stresses that enter (14a) are the stresses within the 
inclusion, which can be less than or greater than the 
far-field stresses, depending on whether the inclusion is 
softer or stiffer than the matrix. Presumably, runaway 
instability will tend to occur in stiffer inclusions, such as 
zones of deformation bands, rather than in relatively 
soft matrix, and the longer the zones, the more unstable 
they are. 

Runaway-instability within stiff inclusions such as 
zones of deformation bands in sandstone can be quali- 
tively understood by means of a procedure suggested by 
Rudnicki (1977) and Rice (1979) based on equations 
derived by Eshelby. According to Eshelby (1957, 1959), 
the difference between the shear stress in the inclusion 
and the shear stress in the far-field, for example, is 
proportional to the difference between the shear strain 
in the inclusion and strain in the far-field, 

0-t~ ) -- Ov:~2 = 2G(1 - 1/S1212)(Et~ ) - E72 ). (15)  

The shape factor, $1212, assumes the following values for 
Poisson's ratio of 0.2: 

a/b S1212 

1.1 0.247 
5 0.387 
10 0.426 
100 0.492 
1000 0.499 

Here  a/b  is the diameter-to-thickness ratio of the disc- 
shaped inclusion. Equation (15) is valid regardless of the 
properties of the inclusion, as pointed out by Rudnicki 
(1977) and by Rice (1979), but the matrix must be 
linearly elastic. The properties of the inclusion, how- 
ever, determine the magnitude of the strain, Et/), in the 
inclusion. 

The significance of (15) can best be illustrated with an 
example. The stress-strain curve for the matrix is essen- 
tially linear ( O ' - C ' ,  Fig. 7). The crushed sandstone 
within the zone has been highly loaded and deformed 
inelastically as well as elastically, and then partly 
unloaded, as discussed in connection with the growth of 
deformation bands. The loading curve is assumed to be 
of the form O - B - C  (Fig. 7) and the unloading curve is 
O ' - A - B .  The origin of coordinates for strain within the 
zone is selected to be where the unloading curve inter- 
sects the strain axis (Fig. 7) so that the strains we will 
consider within the zone are elastic until point B is 
reached. Since we have deduced that the zone is stiffer 
than the matrix (Aydin & Johnson 1978), the slope of 
line O ' - B  is steeper than that of line O ' - B ' .  Now 
suppose that the far-field stresses are represented by A' 
(Fig. 7). Then the stress within the zone is higher, 
represented by A, according to (15), because the mag- 
nitude of the shear strain within the inclusion is less than 
that of the far-field, and the coefficient 1 - 1/$12~2 is 
always negative, as indicated by the tabulated values of 
$1212. As the far-field stresses are increased to a value 

/ \\D' 

/ 

0 0 

E21 

Fig. 7. Possible conditions during formation of a slip surface within a 
zone of deformation bands in the Entrada or Navajo sandstones. Curve 
O-B-C represents stress-strain relation for material within zone, 
curve O ' - A ' - B ' - C ' - D  for material in matrix. During formation of the 
zone, the stress and strain reached relatively high values at point B; 
stress then relaxed to A. The zone is stiffer than the matrix [G(U) > 
G(L)] so that the far-field stress, o -®, is lower, A ' ,  than the stress, o ~zJ, 
in the zone, as indicated in equation (15), which defines the 'Eshelby 
line.' As the far-field stress increases to C' ,  the stress in the zone passes 
through a maximum and approaches the critical value, olJ~t, at which 
point the deformation in the zone becomes unstable because the 
far-field stress must decrease with further increase of strain within the 

zone. 



30 A. AYDIN and A. M. JOHNSON 

corresponding to C' (Fig. 7), the shear stress within the 
zone becomes equal to the critical value, o-~)¢, 
represented by C. 

At this point, further deformation cannot be accom- 
modated quasistatically by the material within the zone, 
and the material is dynamically driven to large strains. 
We imagine that this condition leads to the formation of 
a slip surface within the zone. The zone is stable for 
far-field stresses between the values represented by 
points B'  and C' (Fig. 9), even though the stress-strain 
curve for the material within the zone is falling, because 
the far-field stress must increase in order  for the strain to 
increase within the zone. 

The instability represented by Rudnicki's 'runaway 
instability' and by Rice's 'Eshelby line' (15) is an 
interaction between the inelastic properties of the 
material and the 'softness' of the loading system, in this 
case the matrix. In effect, the relatively soft matrix 
behaves much as a 'soft' loading machine used in testing 
rocks in which a rock specimen fails violently as strain 
energy is released from the loading machine (e.g. 
Wawersik & Fairhurst 1970). The instability recognized 
by Rudnicki is an attractive explanation, we believe, for 
the formation of slip surfaces within zones of deforma- 
tion bands. 

CONCLUSIONS 

Study of faults in the form of deformation bands, 
zones of deformation bands and slip surfaces in the 
Navajo and Entrada sandstones led to several questions 
concerning the mechanisms and mechanics of faulting in 
porous rocks. We have addressed some of these ques- 
tions qualitatively in terms of a theory of deformation of 
elastic-plastic, t ime-independent materials developed 
in a series of papers by Rice, Rudnicki and Cleary (for a 
compact summary see Rice 1979) and in terms of inclu- 
sion theory developed by Eshelby (1957). 

The tendency for strain to localize in porous rocks can 
be understood in terms of bifurcation in the macroscopic 
constitutive relations. The terms within the constitutive 
relations account for the principal field and laboratory 
observations of faults in sandstones: there is inelastic 
volume change and shear within bands and the physical 
properties of the material change as deformation pro- 
ceeds. 

The deformation bands in the Entrada and Navajo 
sandstones occur in multiple sets, typically four for dip-  
and oblique-slip faulting. We cannot explain the pat- 
terns of the multiple sets of bands in terms of the 
analyses. The analysis of localization by Rudnicki & 
Rice (1975) indicates that infinitely long shear bands 
should form in conjugate pairs and that the bands should 
contain the direction of the intermediate principal 
stress. All other  theories of faulting with which we are 
familiar have the same character and are further 
restricted to plane-strain deformations (e.g. Varnes 
1962, Od6 1960). The theory by Rudnicki & Rice is not 
restricted to plane-strain deformations and might pre- 

dict multiple sets of faults, depending on the variations 
of the many parameters.  Oertel (1965) has demonstrated 
that multiple faults form essentially simultaneously, at 
least in some materials, and Reches (1978) has shown 
that if strain is primarily by slip along faults, four sets are 
required kinematically to accommodate three-dimen- 
sional strains and rotations. 

The formation of several parallel or subparallel defor- 
mation bands rather than continued strain within a 
single band can be understood in terms of strain harden- 
ing. Our analyses, however, have no bearing on the 
formation of bands side by side as in well-developed 
zones of deformation bands. 

Slip surfaces in the Entrada and Navajo sandstones 
always occur within a well-developed zone of deforma- 
tion bands, and they represent extremely localized, 
large deformation. The formation of slip surfaces might 
be understood in terms of 'runaway instability' 
(Rudnicki 1977, Rice 1979) wherein the strains within a 
zone become indefinitely large as the far-field stress state 
becomes critical. Because the material within a zone is 
stiffer than the surrounding sandstone, the stresses 
within the zone are higher than the far-field stresses. 
Therefore,  the surrounding sandstone can be deforming 
elastically under relatively low far-field stresses, whereas 
the stresses within the zone can be sufficiently high for 
the strains to become extremely large. Apparently the 
large strains are accommodated along a discrete surface 
of discontinuity. 
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